Our role in fusion research

Plasma Spectroscopy and Lasers laboratory – PSL lab Institute of Physics, Belgrade Serbia

Milivoje Ivković

Plasma Spectroscopy & Lasers laboratory

 Founded by: Acad. Nikola Konjević
 Research area: Laser physics, technology and applications Plasma spectroscopy Plasma diagnostics – OES Stark broadening of spectral lines Laser aided PD – interferometry, scattering Laser induced breakdown spectroscopy Pulsed laser deposition

Stuff

Marko Cvejić

Marijana Gavrilović

Milica Vinić

Biljana Stankov Milivoje Ivković

Sonja Jovićević Nikola Konjević

Plasma Spectroscopy & Lasers laboratory

WHAT WE HAVE

CW RADIATION SOURCES

High pressure Hg lamps

Wall stabilized arc

U shaped Ar stabilized arc

Hollow cathode discharge – DBD

Micro- discharges

Atmospheric pressure glow discharges

Microwave induced plasma sources - modified Beenakker caity

Low pressure

Open capillary

Mini MIP torch

Microwave induced plasma Evans resonant cavity

PULSED RADIATION SOURCES

Flashlamp with quartz windows

Capillary discharge

Laser ablation induced fast pulse discharge

Low pressure pulsed discharges "Z pinch" like Laser induced plasmas

LIBS PLD

POWER SUPPLIES

PULSED POWER SUPPLIES

Triggered spark gap

PLECENE PPLECENE PLECENE PLECE

DC POWER SUPPLIES

2 kV, 10 mA (He-Ne laser 20 kV, 100 mA (CO₂ laser) 200 – 400 V, 15 - 30 A (Ar laser)

Glass thyratron

Grounded grid

deuterium thyratron

Krytron

SPECTRA RECORDING SYSTEMS

MONOCHROMATORS – Scanning Ebert, Czerny-Turner, Rowland circle VUV, VIS, IR (100 nm – 20 μm)

IMAGING SPECTROMETER

ECHELLE

DETECTION SYSTEMS

- Photo plates and films (microdensitometer)
- CCD
- -- Photomultipliers, photodiodes, IC detectors (pA meter, lock-in amplifier) (Boxcar averager, digital oscilloscopes)
- ICCD cameras

LASERS

He-Ne Argon-ion N₂ dye

Excimer pumped dye laser $\lambda = 200 - 1200 \text{ nm}$

 CO_2 laser pumped FIR laser λ up to 300 μ m

 CO_2 laser

Nd:glass laser 1 kJ 80 <u>ns</u>

WHAT WE MEASURED

SPECTRAL LINES OF IONIZED ATOM Regularities along isoelectronic sequences

M.Ivković, N. Ben Nessib, N.Konjević, 2005 J.Phys.B: At.Mol.Opt.Phys.**38**,713

- B.Blagojević, M.V.Popović and N.Konjević, M.S.Dimitrijević, JQSRT 61, 361-375 (1999)
- B.Blagojević, M.V.Popović and N.Konjević, Physica Scripta 59, 374-378 (1999)
- B.Blagojević, M.V.Popović and N.Konjević, J.Quant.Spectrosc.Radiat.Transfer 67, 9-20 (2000)

SPECTRAL LINES OF NEUTRAL ATOMS

Kr Ne He

S.Jovićević, M.Ivković, R.Žikić and N.Konjević, J.Phys.B: At.Mol.Opt.Phys. 38, 1249-1259 (2005) M Ivković, R Zikic, S Jovićević, N Konjević, J. Phys. B: At. Mol. Opt. Phys. **39** (2006) 1773 – 1785

 M. Ivković, M. A. Gonzalez, S. Jovićević, M. A. Gigosos, N. Konjević SAB: 65, 234 - 240 (2010)
 Ivković M., Gonzalez M. A., Lara N., Gigosos M. A., Konjević N., JQSRT 127 (2013) p.82-89

The spectral profile of the He I singlet line (667.82 nm) emitted from the divertor region of JT-60U, Plasma Phys. Control. Fusion 41 (1999) 747–757

T. Gajo, M. Ivkovic, N. Konjevic, I. Savic, S. Djurovic, Z. Mijatovic, R. Kobilarov, MNRAS (2015) **455**, 2969–2979

B. Omar, A. Wierling, **Sibylle Gunter** and G. Ropke Journal of Physics: Conference Series **11** (2005) 147

HYDROGEN LINES

$N_{e} < 10^{14} \text{ cm}^{-3}$

- Line merging
- Higher member of Balmer series

 a) halfwidths
 b) profile shapes
- $10^{14} \,\mathrm{cm}^{-3} < \mathrm{N}_{\mathrm{p}} < 10^{17} \,\mathrm{cm}^{-3}$
 - Balmer beta
 - a) halfwidths
 - b) profile shapes
 - Program NED
- Balmer alpha and gamma

N_e > 10¹⁶ cm⁻³ - Balmer beta
a) peaks separation
b) profile shapes
Ivković, N.Konjević, Z.Pavlović,
Hydrogen Balmer beta: The
separation between line peaks for..
JQSRT 154(2015)1–8

M.Ivković, S. Jovićević, N. Konjević: *Low electron density diagnostics REVIEW* Spectrochimica Acta B **59**, 591 - 605, (2004)

N.Konjević, M.Ivković and N.Sakan, Hydrogen Balmer lines for low electron number density plasma diagnostics, REVIEW Spectrochimica. Acta B 76, 16–26 (2012)

> R.Zikić, M.A.Gigosos, M.Ivković, M.A.Gonzalez, N.Konjević, *A program for ...,* SAB **57**, 987 - 998 (2002)

HYDROGEN LINES $N_{e} < 10^{14} \text{ cm}^{-3}$

Line merging - Inglis Teller relation

$$log(N_i + N_e[cm^{-3}]) = 23.26 - 7.5 log n_{max} + 4.5 log Z$$

M.Ivković, S. Jovićević, N. Konjević: *Low electron density diagnostics REVIEW* Spectrochimica Acta B **59**, 591 - 605, (2004)

B.L. Welch, H.R. Griem, et al.

Density measurements in the edge, divertor and X-point regions of Alcator C-Mod from Balmer series emission, Phys. Plasmas 2 (1995)4246–4251.

HYDROGEN LINES $N_e < 10^{14} \text{ cm}^{-3}$

Higher members of Balmer series

From line halfwidths

$$N_{e}[m^{-3}] = 8.0 \ x \ 10^{18} \left(\frac{w[0.1 \ nm]}{\alpha_{1/2}^{n}}\right)^{3/2}$$

Transition	$\alpha_{1/2}^{n}$	W _m [nm]	W _g [%]	N _e [cm ⁻³]
6 – 2	0.150	0.73	5.6	2.71 x 10 ¹⁵
7 - 2	0.184	0.86	4.7	2.56 x 10 ¹⁵
8 - 2	0.283	1.30	3.1	2.49 x 10 ¹⁵
9 – 2	0.345	1.56	2.5	2.43 x 10 ¹⁵
10 - 2	0.458	2.30	1.7	$2.84 \text{ x} 10^{15}$

From Inglis-Teller relation $1.4 - 2.9 \times 10^{15} \text{ cm}^{-3}$ from H_{β} profile shape $N_e = 2.54 \times 10^{15} \text{ cm}^{-3}$

> M.Ivković, S. Jovićević, N. Konjević: *Low electron density diagnostics.... REVIEW* Spectrochimica Acta B **59**, 591 - 605, (2004)

HYDROGEN LINES $N_e < 10^{14}$ cm⁻³

Comparison of experimental and theoretical profiles

Theoretical line shape for Balmer line n=22

Theoretical and experimental line shape of H_{δ} line (n=6, $T_e=T_i=8000K$, $W_i=0.03nm$)

N_e and T_e FROM BOLTZMANN PLOTS

N Konjević, S.Jovićević, M. Ivković Physics of plasmas **16**, 103501, (2009).

PLASMA FACING COMPONENTS STUDY

Spectroscopic diagnostics of laser-induced plasmas **REVIEW** N. Konjević, M. Ivković and S. Jovićević, Spectrochimica Acta Part B: **65**, 593 - 502 (2010)

LIBS DEVELOPMENT – Eurofusion project proposal

Phys4PicoLIBS PHYSICS OF THE PICOSECOND LASER PULSE – TUNGSTEN INTERACTION FOR THE LIBS MEASUREMENT OF LIGHT ELEMENT (He, D, T, N AND O) IMPLANTATION IN TOKAMAK PLASMA FACING COMPONENT MATERIALS

WHAT ELSE WE CAN DO

<u>Besides</u> - N_e diagnostics from spectral lines in divertor region and

- analysis of plasma facing components

FIR LASER HETERODYNE INTERFEROMETRY He-Ne laser interferometry, CO₂ laser interferometry

VUV SPECTROSCOPY

M. L. Reinke et al. **VUV Impurity Spectroscopy on the Alcator C-Mod Tokamak,** 18th Topical Conference on High-Temperature Plasma Diagnostics, Wildwood, New Jersey, May, 2010.

LIF - Third harmonic of excimer pumped dye laser – Lyman alpha

D/T RATIO – Halpha

MSE – Motional Stark Effect

THOMSON SCATTERING, SHADOWGRAPHY, SCHLIEREN